Rating:

Date added: 7.3.2015

471 890

FB2PDFEPUB

Systems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics.MoreSystems of conservation laws arise naturally in physics and chemistry. To understand them and their consequences (shock waves, finite velocity wave propagation) properly in mathematical terms requires, however, knowledge of a broad range of topics. This book sets up the foundations of the modern theory of conservation laws describing the physical models and mathematical methods, leading to the Glimm scheme. Building on this the author then takes the reader to the current state of knowledge in the subject. The maximum principle is considered from the viewpoint of numerical schemes and also in terms of viscous approximation. Small waves are studied using geometrical optics methods. Finally, the initial-boundary problem is considered in depth. Throughout, the presentation is reasonably self contained, with large numbers of exercises and full discussion of all the ideas. This makes it an ideal text for graduate courses in the area of partial differential equations. Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves by Denis Serre